k.p theory of freestanding narrow band gap semiconductor nanowires
نویسندگان
چکیده
منابع مشابه
Semiconductor waveguide inversion in disordered narrow band-gap materials
It has been previously demonstrated that it is possible to form the NOT gate in a coupled semiconductor waveguide structure in III–V materials. However, to this point, investigations have assumed the materials to be perfect. In this article, we present results of a semiconductor waveguide inverter in GaAs and InAs with disordered material effects included in the simulation. The behavior of the ...
متن کاملHard gap in epitaxial semiconductor-superconductor nanowires.
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunnelling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological superconductivity as a basis for quantum information processing. Proposals in this direction based on the proximity effect in semiconductor nanowi...
متن کاملThermal degradation of semiconductor qubit inverter operation in narrow band-gap materials
Recently, quantum computing has received a great deal of focus as a possible means of achieving rapid computational speeds when compared with that of classical computation. Nonetheless, in many of the current implementations of a “quantum computer”, the semiconductor platform has been largely overlooked. It has been previously demonstrated that it is possible to form the NOT gate in a coupled s...
متن کاملElectrochemical Capacitance Voltage Profiling of the Narrow Band Gap Semiconductor InAs
The design of compound semiconductor based devices increasingly requires the integration of materials of differing band gaps. This is achieved by depositing layers of different semiconductors epitaxially on a substrate. Techniques such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD) can be used to precisely control the thickness and chemical composition of he...
متن کاملDirect Band Gap Wurtzite Gallium Phosphide Nanowires
The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2016
ISSN: 2158-3226
DOI: 10.1063/1.4972987